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Resistive tearing instabilities are common in fluids that are highly electrically conductive
and carry strong currents. We determine the effect of stable stratification on the tearing
instability under the Boussinesq approximation. Our results generalise previous work
that considered only specific parameter regimes, and we show that the length scale of
the fastest growing mode depends non-monotonically on the stratification strength. We
confirm our analytical results by solving the linearised equations numerically, and we
discuss whether the instability could operate in the solar tachocline.
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1. Introduction

In magnetised fluids of large but finite conductivity, tearing-type instabilities frequently
arise in regions where one component of the magnetic field changes sign. In such re-
gions field lines can easily reconnect, forming structures of closed field lines known as
plasmoids or “magnetic islands” (Ji et al. 2022). Tearing instabilities have long been
studied in the context of plasma confinement experiments (Furth et al. 1963), the Earth’s
magnetotail (Coppi et al. 1966) and the solar atmosphere (Somov & Verneta 1993), and
more recently in diverse areas such as neutron stars (Lyutikov 2003; Wood et al. 2014;
Gourgouliatos & Hollerbach 2016), post-main-sequence stars (Kaufman et al. 2022), and
generic magneto-hydrodynamic (MHD) turbulence (Boldyrev & Loureiro 2018). In each
of these contexts, the crucial property of the instability is that it leads to reconnection,
releasing energy from the magnetic field, even in fluids that are close to the ideal MHD
limit.
The simplest geometry in which to study tearing instability is the “sheet pinch”

(Furth et al. 1963), in which a thin and flat current sheet is embedded within a large-
scale magnetic field. Furth et al. (1963) considered an MHD model with asymptotically
small resistivity, and showed that the tearing instability can be described analytically by
solving the ideal equations in the bulk of the fluid, solving the resistive equations in a
boundary layer within the current sheet, and asymptotically matching these solutions.
Their model included variations in density and resistivity, but to simplify the analysis
they assumed that such variations are small, and they made a further approximation that
is valid only if the growth rate is slower than resistive diffusion across the boundary layer;
this latter approximation came to be known as the “constant-ψ approximation”. Later
studies have generalised this analysis to include various additional physical effects, but
the majority of analytical results to date have been dependent on the same constant-
ψ approximation. Under this approximation, the existence of the instability can be
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demonstrated, but it is not possible to obtain the full dispersion relation or to identify
the fastest growing mode. An alternative approach is to solve the full set of (linear
or nonlinear) equations numerically (e.g. Dahlburg et al. 1983; Califano et al. 1999;
Attico et al. 2000; Landi et al. 2008; Jeĺınek et al. 2017; Kaufman et al. 2022). However,
with this approach it is not possible to understand how the instability behaves in the
asymptotic regime of high conductivity, which is often the regime of most physical
interest.

Coppi et al. (1976) and Pegoraro & Schep (1986) showed that, in the simplest case
(with constant density and resistivity), the boundary-layer problem can be solved ana-
lytically, which allows the full dispersion relation to be obtained and the fastest growing
mode to be identified. In fact, this boundary-layer problem had already been solved
earlier by Gibson & Kent (1971), and generalised to include density stratification by
Baldwin & Roberts (1972). Unfortunately, their work seems to have been largely over-
looked in the plasma physics community, and the full solution of the unstratified case is
usually attributed to Coppi et al. (e.g. Boldyrev & Loureiro 2018).

In early studies, density stratification was often included because of its analogy with
the effect of stellarator curvature (e.g. Furth et al. 1963; Johnson et al. 1963). In the
present work, our motivation is the solar tachocline, which is a strongly stably stratified
layer within the Sun that is believed to harbour a strong toroidal magnetic field. There
are many instabilities that may play a role in the dynamics of the tachocline, such as mag-
netic buoyancy (Parker 1955; Hughes 2007; Gilman 2018), magneto-rotational instability
(MRI) (Balbus & Hawley 1991; Parfrey & Menou 2007; Ogilvie 2007; Kagan & Wheeler
2014; Gilman 2018), clamshell and tipping-type instabilities (Cally et al. 2003), as well
as non-magnetic, shear-driven instabilities (Spiegel & Zahn 1970; Garaud 2001). How-
ever, the possibility of tearing instability has seldom been mentioned in this context,
outside of a few studies (Ji & Daughton 2011; Lewis 2022), none of which considered
the effect of stratification. Recently, however, it has been suggested that the tachocline
contains a toroidal field whose sign oscillates in the radial direction, as a result of
inward diffusion of the cyclic dynamo field from the overlying convective envelope
(Forgács-Dajka & Petrovay 2001; Barnabé et al. 2017). Whether such a field configu-
ration is compatible with the Sun’s interior rotation, and with the solar dynamo cycle,
remains a matter of debate (e.g. Gough 2007; Matilsky et al. 2022). In any case, such a
field configuration seems likely to be subject to tearing instability, unless it is suppressed
by the tachocline’s stabilising stratification. This motivates us to investigate the degree
to which stable stratification affects the instability, and hence to assess whether it can
arise within the solar tachocline.

In this paper we re-derive the boundary-layer solution of Baldwin & Roberts (1972)
and use it to fully describe the effect of stratification on the tearing instability. We
identify several different parameter regimes depending on the degree of stratification,
and demonstrate that previous results are reproduced in particular asymptotic limits.
We then confirm our results by solving the linearised equations numerically. The plan
of the paper is as follows. Our mathematical model is defined and the equations are
linearised in section 2. We derive analytical solutions valid in the bulk and boundary
layer in sections 3 and 4, respectively. In section 5 we use asymptotic matching to obtain
an implicit dispersion relation, and describe its properties in the asymptotic limit of large
conductivity. In section 6 we solve the linearised equations numerically, validating the
analytical results and quantifying the effect of finite conductivity and domain size on
the instability. The results are applied to the solar tachocline in section 7, where we also
consider the effect of thermal diffusion. We summarise our findings in section 8.
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2. The sheet pinch model

We consider an inviscid, stably stratified, Boussinesq fluid under the MHD approxi-
mation:

∂u

∂t
+ u · ∇u = − 1

ρ0
∇P + θez +

1

4πρ0
(∇×B)×B, (2.1)

∂B

∂t
= ∇× (u×B) + η∇2

B, (2.2)

∇ ·B = 0, (2.3)

∇ · u = 0, (2.4)

∂θ

∂t
+ u · ∇θ = −N2uz, (2.5)

where ez is the unit vector in the z (vertical) direction, P is the pressure, ρ0 is the
(constant) reference density, u is the fluid velocity, with vertical component uz, B is the
magnetic field (measured in Gaussian c.g.s. units), η is the magnetic diffusivity, N is the
(constant) buoyancy frequency, and θ is the buoyancy variable.
In these equations we have included magnetic diffusion, because it is essential for

tearing instability to operate, but we have neglected the diffusion of both momentum
and temperature. As we shall see, this simplification makes it possible to solve the
boundary-layer problem analytically. The effect of momentum diffusion is generally to
reduce the growth rate, as has been demonstrated in previous works (e.g. Porcelli 1987;
Tenerani et al. 2015). The effect of thermal diffusion, which is certainly important in the
solar tachocline, will be addressed in section 7.1. Unsurprisingly, the main consequence
of including thermal diffusion is to reduce the stabilising effect of the stratification.

2.1. Background state

As illustrated in figure 1, we consider a background state at rest with a magnetic field
B = (B(z), 0, 0) in Cartesian coordinates. The crucial condition for tearing instability
to occur is that the sign of B(z) reverses for some value of z, which we will take to
be z = 0 without loss of generality. The fastest-growing tearing modes are generally
found to be invariant in the direction of the electric current (e.g. Furth et al. 1963),
which in our case is the y-direction, and so for simplicity we will only consider two-
dimensional perturbations in the xz-plane. Such modes are insensitive to any component
of the background field in the y-direction, and so we have taken this to be zero without
loss of generality. For simplicity we will assume that B(z) is an odd function, which
implies that the solutions of the linear perturbation problem have either even or odd
symmetry.
In what follows, for definiteness we will generally adopt the so-called Harris field,

B(z) =
√

4πρ0βℓ tanh(z/ℓ), (2.6)

(named for Harris 1962) where the constant β quantifies the Alfvénic shear in the current
sheet, which has thickness ℓ. We then define the Lundquist number as

S ≡ βℓ2

η
. (2.7)

However, it is straightforward to generalise our results to other choices for the background
field.
We note that the background state is not strictly a steady solution of the induction

equation (2.2) in the presence of finite resistivity. However, we are concerned with the
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Figure 1. Initial background state configuration. Horizontal arrows indicate the strength and
direction of the magnetic field, and the colour gradient indicates the stable density stratification.
Tearing instability arises from magnetic diffusion within an internal boundary layer, indicated
by a thin grey strip around the x-axis.

regime in which η is very small, in the sense that S ≫ 1, and the slow diffusion of the
background state can be neglected provided that the instability grows on a timescale
much shorter than the bulk diffusion time, ℓ2/η. In what follows, it is often convenient to
measure quantities in units defined by the background field, and in particular to use ℓ as
the length scale and 1/β as the time scale, in which case the condition for self-consistency
of our instability analysis is naturally written as σ/β ≫ 1/S, where σ is the growth rate.
In terms of these natural units, the strength of the stratification can be expressed as a
“magnetic Richardson number”,

RB ≡ N2

β2
, (2.8)

named by analogy with the hydrodynamic Richardson number that determines the
stability of shear flows.

2.2. Linear perturbations

As mentioned above, we anticipate that the fastest growing tearing mode will be
invariant in the direction of the electric current, which is the y-direction for our choice
of background state. We therefore consider small perturbations to the background state
in the form

a(x, z, t) = eikx+σt â(z),

where a(x, z, t) represents a perturbation to any of the variables, k is the wavenumber,
σ is the growth rate, and â(z) is the perturbation eigenfunction. The linearised versions
of equations (2.1)–(2.5) can then be reduced to the following pair of coupled ordinary
differential equations for the z-components of u and b:

σ2û′′z − (σ2 +N2)k2ûz =
ikσ

4πρ0

[

Bb̂′′z −
(

k2B +B′′
)

b̂z

]

, (2.9)

ηb̂′′z − (ηk2 + σ)b̂z = −ikBûz, (2.10)

where a prime (′) denotes a derivative with respect to z.
Following the method introduced by Furth et al. (1963), we will consider separately

the bulk and boundary-layer regions of the domain, solving a leading-order asymptotic
approximation to equations (2.9) and (2.10) in each region. The solutions will then
be connected by asymptotic matching, in order to obtain a dispersion relation for the
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tearing instability. For simplicity, we will take the bulk domain to be infinite in extent,
with a background field B(z) that is bounded in magnitude. In that case, the only
physically meaningful solutions are those for which the perturbations are also bounded at
infinity, and this will serve as our boundary condition. (Other solutions would correspond
to an injection of energy from infinity, rather than an instability arising internally.)
Furthermore, if B(z) is an odd function (as we shall assume throughout) then we generally

expect the fastest growing solution to have an even b̂z(z), and therefore an odd ûz(z),
along with a real growth rate. These properties, which are frequently assumed in studies
of tearing instability (e.g. Coppi et al. 1976), will be confirmed in Appendix A.

3. The bulk solution

Within the bulk of the domain we neglect the diffusion of the field, and therefore omit
the terms in equation (2.10) involving η; this approximation requires the growth rate, σ,
to exceed the rate of diffusion, i.e. σ ≫ η(k2 + 1/ℓ2). Having neglected these terms, it is
straightforward to combine Equations (2.9) and (2.10) into a single equation:

σ2û′′z − (σ2 +N2)k2ûz =
k2

4πρ0

[

(B2û′z)
′ − k2B2ûz

]

. (3.1)

We further assume that the growth rate of the instability is small compared to the Alfvén
frequency, i.e. σ ≪ βℓk, which allows us to neglect the terms involving σ2 on the left-
hand side of this equation. The validity of all these assumptions will be verified once the
growth rate is known. Thus, we finally arrive at the bulk equation

(

B2û′z
)′

=
(

k2B2 + 4πρ0N
2
)

ûz. (3.2)

The same equation was obtained by Furth et al. (1963), although they assumed that the
N2 term was small enough to be neglected in the bulk. When this term is not negligible,
which is the regime of interest in the present work, the nature of the bulk equation
changes subtly but significantly (e.g. Johnson et al. 1963). We note that z = 0, which is
the location of the boundary layer, is a regular singular point of equation (3.2). This is
expected, since it is within the boundary layer that resistivity (which we have neglected
in the bulk equation) is required in order to regularise the solutions. As we approach
z = 0, where we assume that the background field is of the form B(z) ≃ √

4πρ0βz, the
general solution of equation (3.2) is a superposition of two Frobenius power series with

the exponents − 1
2 ±

√

1
4 +N2/β2 = − 1

2 ±
√

1
4 +RB . Therefore unlike the unstratified

case, in which ûz can be written as a series in integer powers of z, in the stratified
problem ûz is a superposition of power series with generally incommensurate exponents.
In particular, we can anticipate that a difficulty will arise when the stratification is
increased to the critical value RB = 3/4, because then the Frobenius exponents will
differ by 2, implying that logarithmic terms must appear in the solution. As we shall see,
this means that the usual procedure for matching the bulk solution to the boundary-layer
solution fails. We note that non-integer exponents in the solution can also result from
other physical processes, such as geometric curvature (Glasser et al. 1975) and the Hall
effect (Attico et al. 2000), but the consequences for the asymptotic matching problem
have not been fully recognised in the literature.

The above considerations are generic for any sensible choice of background field B(z).
In the particular case of the Harris field (2.6), the bulk equation can be solved in closed
form by first making the transformation T = tanh2(z/ℓ) to put it into hypergeometric
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form:

d2ûz
dT 2

+

(

3/2

T
− 1

1− T

)

dûz
dT

=
s2T + (r2 − 1

4 )(1− T )

4T 2(1− T )2
ûz , (3.3)

where we have introduced dimensionless parameters r and s, which are defined as

r ≡
√

1
4 +RB and s ≡

√

(kℓ)2 +RB. (3.4)

The solution that has the required boundedness as |z| → ∞ can be expressed in terms
of the hypergeometric function 2F1 as

ûz = T−1
4+

1
2 r(1 − T )s/22F1(

1
2r +

1
2s− 1

4 ,
1
2r +

1
2s+

5
4 , s+ 1, 1− T ) sgn(z), (3.5)

where we have included a factor of sgn(z) so that ûz(z) is an odd function, for reasons
explained earlier. From here on, the strength of the stratification will generally be
measured in terms of the parameter r or RB, rather than N . The unstratified case
corresponds to r = 1/2, and the critical stratification mentioned above corresponds to
r = 1. From equation (3.5) it can be confirmed that the bulk solution near z = 0 has
logarithmic behaviour when r = 1 (or when r is any other integer — see Appendix A).

4. The boundary layer solution

The boundary layer is assumed to be thin, in the sense that its thickness (which will be
precisely defined later) is smaller than both ℓ and 1/k by a factor of S to some positive
power. In equations (2.9) and (2.10) we will therefore approximate ∇2 ≃ ∂2/∂z2 and

B(z) ≃
√

4πρ0 βz.

These approximations result in the boundary-layer equations

σû′′z =
ikβz√
4πρ0

b̂′′z +
k2N2

σ
ûz, (4.1)

σb̂z =
√

4πρ0ikβzûz + ηb̂′′z . (4.2)

Because these equations involve four derivatives, but only two factors of z, they are more
easily solved by working in Fourier space. Defining the Fourier transform of ûz as

ũz(ζ) =

∫ ∞

−∞
eiζzûz(z) dz ,

equations (4.1)–(4.2) can be transformed and combined into a single equation,
[

σζ2

β2
+RB

k2

σ

]

ũz = k2
d

dζ

(

ζ2

σ + ηζ2
dũz
dζ

)

. (4.3)

This is a second-order ordinary differential equation in ζ, with an essential singularity
at ζ → ∞. We are interested in the solution that is exponentially small at infinity, since
only this solution has an inverse Fourier transform. We note that, because the function
ûz(z) is odd, its transform ũz(ζ) must also be odd. We will therefore solve equation (4.3)
in the domain 0 < ζ <∞ and impose antisymmetry about ζ = 0.
As well as an essential singularity at ζ → ∞, equation (4.3) also has three regular

singularities at ζ = 0 and at ζ = ±i
√

σ/η. On closer inspection, however, the latter
two are found to be only “apparent” singularities, suggesting that there is a change of
variable that reduces this equation to a solvable form (Shanin & Craster 2002). Indeed,
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if we define a new independent variable X =
√
ησ

βk ζ
2 then the boundary-layer equation

becomes

4X1/2 d

dX

(

X3/2

X + λ

dũz
dX

)

=

(

X +
r2 − 1

4

λ

)

ũz , (4.4)

where r is defined as in equation (3.4) and

λ ≡
√

σ3/η

βk
= S1/2(σ/β)3/2(kℓ)−1. (4.5)

Following the method of Shanin & Craster, we can express the desired solution in terms
of the Tricomi function U as

ũz = e−X/2X− 1

4
+ r

2

[

U

(

(r + λ)2 − 1
4

4λ
, 1 + r,X

)

+

(

(λ− 1
2 )

2 − r2

4λ

)

U

(

(r + λ)2 − 1
4

4λ
+ 1, 1 + r,X

)]

sgn(ζ). (4.6)

This is equivalent to the solution obtained by Baldwin & Roberts (1972), and in the
unstratified limit, r → 1

2 , it reduces to the solution obtained by Pegoraro & Schep (1986).
From this solution, the thickness of the boundary layer can be defined as the region in
which the variable X is of order unity, which corresponds in z-space to a thickness of
(ησ)1/4/(βk)1/2. Unfortunately, at this stage we do not know the order of magnitude of
the growth rate, σ, and so the boundary layer is of indeterminate thickness. However, our
earlier assumption that it is much smaller than ℓ can now be expressed more precisely
as σ/β ≪ S(kℓ)2, which will be verified a posteriori.
We note, in passing, that our boundary-layer equation (4.3) has the same mathematical

form as one that arises when analysing tearing instability in the electron-MHD regime
(e.g. Attico et al. 2000; Wood et al. 2014). However, to our knowledge, the fact that it
can be solved analytically has not previously been recognised in that context.
For the purposes of asymptotically matching the boundary-layer solution to the bulk

solution, as done in the following section, we need only determine the behaviour of the
boundary-layer solution for “large” values of z (in comparison with the scale of the
boundary layer itself), which is dictated by the behaviour of equation (4.6) for X ≪ 1.
Specifically, we will make use of the result (see Kammler 2008)

ũz(ζ) ∼ |ζ|−α sgn(ζ) as ζ → 0 ⇐⇒ ûz(z) ∼
|z|α−1 sgn(z)

2i sin(π2α)Γ (α)
as |z| → ∞

(4.7)
to determine the behaviour of the boundary-layer solution for large z from its solu-
tion (4.6) in Fourier space.

5. Asymptotic matching

Now that we are in possession of analytical solutions valid in the bulk and boundary
layer regions, all that is required is to asymptotically match these two solutions, and thus
arrive at a dispersion relation. Following Furth et al. (1963), in nearly all previous studies
of tearing instability this has been achieved essentially by matching the coefficients of
the two leading-order terms in the series representations for the bulk and boundary-layer
solutions. Our bulk solution (3.5) for ûz(z) has the form

ûz =

∞
∑

n=0

[

An|z|−
1

2
−r+2n +Bn|z|−

1

2
+r+2n

]

sgn(z), (5.1)
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whereas our boundary-layer solution (4.6), after transforming back into z-space, has the
form

ûz =

∞
∑

n=0

[

an|z|−
1

2
−r−2n + bn|z|−

1

2
+r−2n

]

sgn(z), (5.2)

where the coefficients An, Bn, an and bn are known functions of k and σ.
Matching the first terms in each of the four series, bearing in mind that each solution

also allows an arbitrary overall factor, we obtain an implicit dispersion relation:

A0

B0
(k) =

a0
b0

(σ, k). (5.3)

However, the terms that are matched under this procedure cease to be the leading-order
terms when r > 1. Indeed, if r = 1 then, as mentioned earlier, both the bulk and the
boundary-layer solutions will feature logarithmic terms (of different forms) and hence
this matching process cannot be valid in that case. Fortunately, as we shall show, the
tearing instability is strongly suppressed by stable stratification before this mathematical
difficulty arises, so the standard matching procedure leading to equation (5.3) is adequate
for our purposes.
Taking the values for the coefficients A0, B0, a0 and b0 implied by equations (3.5) and

(4.6) (see Appendix A), we thus obtain the dispersion relation

(Skℓ)2r/3
Γ (r)

Γ (−r)
Γ ( s2 − r

2 − 1
4 )

Γ ( s2 + r
2 − 1

4 )

Γ ( s2 − r
2 + 5

4 )

Γ ( s2 + r
2 + 5

4 )
=

λr/3
Γ (−r)
Γ (r)

λ+ 1
2 + r

λ+ 1
2 − r

Γ

(

(λ+r)2−
1
4

4λ

)

Γ

(

(λ−r)2− 1
4

4λ

)

sin[π2 (
1
2 + r)]

sin[π2 (
1
2 − r)]

Γ (12 + r)

Γ (12 − r)
.

(5.4)

Although this result is highly implicit, we note that the left-hand side of equation (5.4)
(which comes from the bulk solution) is only a function of k, and the right-hand side
(which comes from the boundary-layer solution) is only a function of λ, which itself is
related to σ and k by equation (4.5). In fact, for any value of r ∈ [ 12 , 1), and for any
value of S > 0, we can prove that there is always a single fastest growing mode. First
observe that the left-hand side of equation (5.4) is a positive and monotonically increasing

function of k for 0 < kℓ <
√

r + 1
2 ; it vanishes as kℓ → 0 and diverges as kℓ→

√

r + 1
2 .

Meanwhile the right-hand side is a positive and monotonically decreasing function of
λ for for 0 < λ < r + 1

2 ; it diverges as λ → 0 and vanishes as λ → r + 1
2 . Therefore

equation (5.4) describes a monotonically decreasing relation between k and λ over this
range of k. Expressing this result in terms of the growth rate, σ, which is related to λ by

equation (4.5), we find that σ vanishes at k = 0 and at k =
√

r + 1
2/ℓ, and has a unique

maximum within this range of k, which corresponds to the fastest growing tearing mode.
In the unstratified limit, r → 1

2 , equation (5.4) reduces to the well-known result (e.g.
Coppi et al. 1976; Pegoraro & Schep 1986; Boldyrev & Loureiro 2018)

S1/3 (kℓ)4/3

1− (kℓ)2
=

1− λ2

πλ5/6
Γ (1+λ

4 )

Γ (3+λ
4 )

. (5.5)

In that case, and in the asymptotic limit S → ∞, the fastest growing mode has λ of
order unity and kℓ ≪ 1, such that the left-hand side can be approximated as a power
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law ∝ k4/3. Hence, using the definition of λ in equation (4.5), the fastest growing mode
has kℓ ∼ S−1/4 and σ/β ∼ S−1/2.

Interestingly, for any non-zero amount of stratification (i.e. for any value of r > 1/2),
the left-hand side of equation (5.4) has a different asymptotic behaviour in the limit k → 0
(and so does the right-hand side in the limit λ → 0). This implies that the instability
changes qualitatively in the presence of stratification (at least in the asymptotic limit
of large S), and as we show below, several distinct asymptotic regimes arise in the
simultaneous limit of S → ∞ and r → 1/2.

Recalling the definition (3.4) of r in terms of RB , we note that the limit r → 1/2 is
equivalent to RB → 0. In the following, we will therefore consider the asymptotic limit
S → ∞ with RB ∼ S−a for some positive constant a. To understand the behaviour of the
dispersion relation (5.4) in this limit, it is helpful to consider how the left- and right-hand
sides behave for different ranges of k and λ, respectively. For RB ≪ 1, the left-hand side
of equation (5.4) is of order

S1/3R
1/2
B (kℓ)1/3 for kℓ≪ R

1/2
B (5.6a)

S1/3(kℓ)4/3 for R
1/2
B ≪ kℓ≪ 1, (5.6b)

while the right-hand side is of order

R
−1/2
B λ−1/3 for λ≪ RB (5.7a)

λ−5/6 for RB ≪ λ≪ 1 (5.7b)

1− λ for λ ∼ 1. (5.7c)

From this information, and the fact that λ ≡ S1/2(σ/β)3/2(kℓ)−1, we can identify how
the growth rate, σ, scales with the wavenumber, k, in different regions of the parameter
space. The result is shown in figure 2, which illustrates how new regimes arise as the
strength of the stratification is increased (or, equivalently, as the value of the exponent a
is decreased). Qualitative changes to the dispersion relation occur for a = 1

2 ,
2
5 ,

2
9 and 0,

and the form of the function σ(k) for each of these critical values is indicated in figure 3.
We note that, as we would expect in a stably stratified system, increasing the strength
of the stratification acts to decrease the growth rate (at a given value of k).

The assumptions made about the growth rate in sections 3 and 4 can now be checked,
with the aid of figure 2. In particular, we have assumed that S−1(1+ (kℓ)2) ≪ σ/β ≪ kℓ
and that σ/β ≪ S(kℓ)2, and we find that these assumptions hold in all of the regions
plotted, as long as kℓ≫ S−1 and RB ≪ 1.

We are primarily interested in how the fastest growing mode changes in the presence of
stratification, and as illustrated by the dashed arrows in figure 2 there are three distinct
parameter regimes to consider, which we shall refer to as weakly, moderately and strongly
stratified.

5.1. The weakly stratified regime, a > 1/2

If a > 1/2, then in the limit S → ∞ the entire dispersion relation is essentially identical
to the unstratified case, RB = 0. The fastest growing mode thus has kℓ ∼ S−1/4 and
σ/β ∼ S−1/2, as described above.

In the case a = 1/2, the effects of stratification begin to affect the fastest growing

mode, and to show how we can introduce a rescaled wavenumber, k̄ ≡ kℓ/R
1/2
B , which

remains of order unity in the limit S → ∞. In this limit, the dispersion relation (5.4) can
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Figure 2. Scaling regimes, demarcated by dotted lines, for the growth rate, σ, in the asymptotic
limit S → ∞. Coloured arrows track the behaviour of the fastest growing mode as stratification
is increased. The axes are logarithmic.

Figure 3. The dispersion relation in the asymptotic limit S → ∞, with RB ∼ S−a, for
a = 1/2, 2/5, 2/9 and 0. The location of the fastest growing mode is indicated with a circle.

be approximated as

(SR2
B)

1/3 k̄1/3(1 + k̄2)1/2 =
1− λ2

πλ5/6
Γ (1+λ

4 )

Γ (3+λ
4 )

. (5.8)

Figure 4 illustrates how the exact dispersion relation approaches this asymptotic form
for increasing values of S in the case where RB = 0.1S−1/2.
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Figure 4. The dispersion relation (5.4) for various values of S, with RB = 0.1S−1/2. The
dashed curve shows the asymptotic solution (5.8) obtained in the limit S → ∞.

5.2. The moderately stratified regime, 2/9 6 a < 1/2

For stronger stratification (i.e. for smaller values of a), the effect of stratification in the
bulk domain suppresses a range of wavenumbers, including the fastest growing mode. As

a result, the fastest growing mode shifts to smaller length scales, with kℓ ∼ R
1/2
B , and

has a reduced growth rate of σ/β ∼ S−3/5R
−1/5
B .

For a < 2/5, the effects of stratification begin to be felt also in the boundary layer,
suppressing very small scales, but this does not affect the fastest growing mode until

a 6 2/9. In the case a = 2/9 we can introduce rescaled parameters k̄ ≡ kℓ/R
1/2
B and

λ̄ ≡ λ/RB that remain of order unity in the limit S → ∞. In this limit, the dispersion
relation (5.4) can be approximated as

(SR
9/2
B )1/3k̄1/3(1 + k̄2)1/2 =

1

πλ̄5/6
Γ (1+1/λ̄

4 )

Γ (3+1/λ̄
4 )

. (5.9)

Figure 5 illustrates how the exact dispersion relation approaches this asymptotic form
for increasing values of S in the case where RB = 0.1S−2/9. We note that the right-hand
side of equation (5.9) is equivalent to the result obtained by Johnson et al. (1963) using
an extension of the constant-ψ approximation.

5.3. The strongly stratified regime, 0 6 a < 2/9

For even stronger stratification the peak in the growth rate broadens, such that we have

σ/β ∼ S−1R−2
B throughout the range S−1R−4

B ≪ kℓ≪ R
1/2
B . The fastest growing mode,

which can be identified by considering the next-to-leading-order terms in the dispersion

relation, is found at kℓ ∼ S−1/2R
−7/4
B .

In the case a = 0, for which RB is of order unity, the growth rate is very small — of
order σ ∼ S−1β. This is comparable to the rate of diffusion of the magnetic field in the
bulk, and so a key assumption of our analysis no longer holds (see section 3). Moreover,
as mentioned earlier, as RB → 3/4 (and so r → 1) the dispersion relation (5.4) becomes
singular (because Γ (−r) diverges), and so our dispersion relation is clearly not valid for
RB of order unity.
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Figure 5. The dispersion relation (5.4) for various values of S, with RB = 0.1S−2/9. The
dashed curve shows the asymptotic solution (5.9) obtained in the limit S → ∞.

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

Moderate

Stratification

Strong

Stratification

Weak
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Figure 6. The dispersion relation (5.4) for S = 105 and various values of RB . Solid, thick lines
represent the transition between parameter regimes identified analytically: weak (magenta),
moderate (green), strong (blue). The dot-dashed lines represent intermediate values of RB (not
shown in legend).

5.4. Finite Lundquist number, S

The analysis in the previous subsections considered the asymptotic limit S → ∞, but
the same trends can be observed by plotting the dispersion relation (5.4) for different
values of RB with large but finite S. Figure 6 shows results for various values of RB in
the case with S = 105. As predicted analytically, we find that as RB is increased the peak
shifts to larger values of k once RB & S−1/2, and broadens and shifts back to smaller
values of k once RB & S−2/9.
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Figure 7. The numerical (solid lines) eigenfunction ûz(z), scaled to its peak value, for k = 0.1/ℓ
and S = 105, alongside the corresponding analytical (dashed lines) bulk ûz solution (3.5), for
various values of RB . The horizontal axis is logarithmically scaled to give equal prominence to
the boundary layer. The + markers along this axis indicate each 20th computational grid point
out of 5000. The plots in the case RB = 0 (not shown) are virtually indistinguishable from those

for RB = 0.1S−1/2.

6. Numerical validation

The results presented in the previous section are formally valid only in the asymptotic
limit S → ∞, and also assume an unbounded domain. In order to test the robustness
of these analytical results, in the presence of boundaries, we have used a numerical
eigensolver to obtain solutions of the linearised equations (2.9) and (2.10) over a domain
of finite size in z. The solver is based on the Newton–Raphson–Kantorovich (NRK)
code originally developed by Gough et al. (1976). We take the numerical domain to

be z ∈ [0, 100ℓ] and impose that the perturbations ûz and b̂z are antisymmetric and
symmetric at z = 0, respectively. At the other boundary, z = 100ℓ, we impose that ûz
and b̂z both vanish.

In order to resolve both the bulk and boundary layer, we use a non-uniform grid with
5000 grid points spaced cubically in z, i.e. we have grid points at zn = 100ℓ(n/5000)3.
Some example solutions for ûz, for varying degrees of stratification, are plotted in
figure 7. We note that the main effect of increasing the stratification is to suppress
the perturbations in the bulk of the domain, so that ûz becomes increasingly localised
within the boundary layer. Within the bulk, we find that ûz decays exponentially for
large |z|, at the rate exp(−s|z|/ℓ) predicted by equation (3.5) (dashed lines in figure 7).
The exact choice of boundary conditions at z = 100ℓ should therefore have negligible
effect for wavenumbers |k| & 1/(100ℓ), but may have an effect for smaller wavenumbers.
In the results that we present below we have taken the Lundquist number to be S 6 106,
anticipating that the fastest growing tearing mode will have |k| > 1/(100ℓ) and will
therefore be insensitive to the boundary conditions. Conversely, for larger wavenumbers
(|k| & 0.5/ℓ) the bulk solution decays rapidly away from the boundary layer, becoming
so small that rounding errors in the numerical solver become significant. For this reason
we limited the domain size to 100ℓ.
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Figure 8. Analytical (solid lines) and numerical (dotted lines) dispersion relations for RB = 0
(no stratification) for various values of S.

6.1. Results

6.1.1. No stratification

We first verify that the results from the numerical solver are consistent with our
asymptotic solutions in the absence of stratification, i.e. with RB = 0. Figure 8 compares
the analytical and numerical dispersion relation for S = 104, 105 and 106. We find that
the analytical result slightly overestimates the growth rate, but becomes increasingly
accurate for larger S, as expected. Even for S = 104 however, the analytical result
predicts the growth rate and the wavenumber of the fastest growing mode to within
about 2%.

6.1.2. Weak stratification

We next consider the regime S → ∞ with RB ∼ S−1/2, which represents the upper
end of the “weak stratification” regime identified in section 5.1. Figure 9 compares the
analytical and numerical results for the dispersion relation for S = 104, 105 and 106 with
RB = 0.1S−1/2. The axes in this figure are scaled with S, in order to match our analytical
prediction for the fastest growing mode in the limit S → ∞. As in the unstratified
case, the analytical result slightly overestimates the true growth rate, but becomes more
accurate for larger S. Moreover, for large S the dispersion relation in a neighbourhood of
the fastest growing mode converges to the result (5.8), which is indicated by the dashed
curve in figure 9.

6.1.3. Moderate stratification

We next consider the regime S → ∞ with RB ∼ S−2/9, which represents the upper end
of the “moderate stratification” regime identified in section 5.2. Figure 10 demonstrates
the convergence of the analytical and numerical results for increasing values of S in the
case RB = 0.1S−2/9. In this regime, the peak of the dispersion relation is well described
by the formula (5.9).

6.1.4. Strong stratification

For reasons discussed in section 5.3, our analytical results cease to be valid when the
stratification parameter RB is of order unity. However, for any value of RB < 3/4, our
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Figure 9. Analytical (solid lines) and numerical (dotted lines) dispersion relations for various

values of S, with RB = 0.1S−1/2. The dashed curve shows the asymptotic solution (5.8) obtained
in the limit S → ∞.
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Figure 10. Analytical (solid lines) and numerical (dotted lines) dispersion relations for various

values of S, with RB = 0.1S−2/9. The dashed curve shows the asymptotic solution (5.9) obtained
in the limit S → ∞.

analytical result still offers a prediction for the wavenumber and growth rate of the fastest
growing mode. It is therefore interesting to compare this prediction with the dispersion
relation obtained numerically.

As illustrated in figure 11, the numerical results show the same flattening of the
dispersion curve predicted analytically, which becomes more pronounced for larger values
of S. The numerical results are also consistent with the prediction that the growth rate is
of order σ ∼ β/S in this regime. However, the analytical result overestimates the growth
rate, and in contrast to the cases presented earlier, this discrepancy increases for larger
values of S. The analytical result is therefore not applicable in this regime. For larger
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Figure 11. Analytical (solid lines) and numerical (dotted lines) dispersion relations for
various values of S, with RB = 0.1.

(fixed) values of RB we would expect the discrepancy to be even larger, becoming infinite
for RB = 3/4.

7. Application to the solar tachocline

The solar tachocline is believed to harbour a strong toroidal magnetic field, amplified
by rotational shear in that region. The exact strength and topology of the field is highly
uncertain, but several studies have suggested values of order 104G (e.g. Antia et al. 2000;
Fan 2009; Jouve et al. 2018). It has recently been argued that this toroidal field reverses
in sign with depth, in the manner of a skin effect, as a consequence of the cyclic nature of
the solar dynamo (Forgács-Dajka & Petrovay 2001; Barnabé et al. 2017; Matilsky et al.

2022). Such a configuration could potentially be subject to tearing instability, and from
our results we can attempt to estimate the growth rate of such instability.
We will adopt the same parameter values used by Barnabé et al. (2017): a toroidal

field of B = 5 × 104G, which reverses sign on a vertical scale of ℓ = 108 cm (about an
order of magnitude smaller than the tachocline’s thickness), and a (turbulent) magnetic
diffusivity of η = 108 cm2 s−1. With these parameters (and taking the density to be
0.21 g cm−3), the Alfvénic shear is of order β ∼ 10−4 s−1, which is somewhat smaller
than the buoyancy frequency in the lower part of the tachocline, N ∼ 10−3 s−1, implying
a magnetic Richardson number of RB ∼ 100. Therefore, based on our results, tearing
instability can only operate in the upper, weakly stratified part of the tachocline.
However, it must be admitted that our analysis has so far neglected the effect of
thermal diffusion, which would likely lessen the stabilising influence of stratification,
possibly allowing the instability to operate even in the deeper parts of the tachocline.
Including thermal diffusion significantly complicates the problem from an analytical
perspective, but it is relatively straightforward to include in our numerical eigensolver.
We therefore present a brief numerical analysis of the effects of thermal diffusion on
instability below, in section 7.1. First, however, we note that an upper bound for the
tearing growth rate can be found by neglecting stratification entirely. For the parameter
values listed above, the Lundquist number is S ≡ βℓ2/η ∼ 104, implying an upper bound
of σ ∼ βS−1/2 ∼ 10−6 s−1, corresponding to growth times of the order of weeks. This
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is far shorter than the 22-year period of the solar dynamo cycle, so it seems unlikely
that such a field could persist in the upper, unstratified part of the tachocline. Even in
the absence of other disturbing influences, such as overshooting convective plumes, we
would expect an initially axisymmetric toroidal field to break up into magnetic islands
via tearing instability, much faster than it could diffuse down through the tachocline.

7.1. Inclusion of thermal diffusion

In the presence of thermal diffusion, equation (2.5) becomes

∂θ

∂t
+ u · ∇θ = −N2uz + κ∇2θ, (7.1)

where κ is the thermal diffusivity. In the solar tachocline, the microscopic diffusivity of
temperature exceeds that of magnetic field by several orders of magnitude (e.g. Gough
2007). However, since we have employed the same turbulent value η = 108 cm2 s−1 used
by Barnabé et al. (2017), it seems appropriate to employ a similar value for κ (which in
any case is not much larger than the microscopic value). It what follows we will therefore
take κ = η for simplicity.
By the same process described in section 2.2 we can reduce the linearised equations to

a system of ordinary differential equations:

σ2û′′z − σ2k2ûz + k2σθ̂ =
ikσ

4πρ0

[

Bb̂′′z −
(

k2B +B′′
)

b̂z

]

, (7.2)

ηb̂′′z −
[

ηk2 + σ
]

b̂z = −ikBûz, (7.3)

κθ̂′′ −
[

σ + k2κ
]

θ̂ = N2ûz. (7.4)

We have adapted the numerical eigensolver described in section 6 to solve this system
of equations, with the additional boundary condition that θ̂ = 0 at z = 0 and at the
outer boundary. Figure 12 compares the dispersion relations obtained numerically in
the cases κ = 0 and κ = η, for S = 104 and for various values of RB . (To reduce the
computational burden some of these results were obtained with a domain size of 80ℓ and
1000 grid points. We have verified that using a larger domain or additional grid points
does not noticeably affect the results.) In all cases with non-zero stratification, including
thermal diffusion leads to a larger growth rate, and the fastest growing mode is found at
smaller length scales (i.e. larger k). Physically, this reflects the fact that thermal diffusion
acts to lessen the stabilising effect of the stratification, especially on small scales. This
effect becomes more significant as the strength of the stratification (measured by RB)
is increased. Interestingly, the results in figure 12 suggest that, with κ = η, the fastest
growing mode has kℓ and

√
S(σ/β) both of order unity even for “strong” stratification

(i.e. for RB of order unity). Further work will be needed to confirm this, however, and to
determine whether tearing instability could occur in the deeper parts of the tachocline,
where RB ∼ 100.

8. Conclusion

We have determined the effect of stable stratification on the resistive tearing instability.
In the absence of thermal diffusion, the dispersion relation has been obtained both
analytically and numerically. As the strength of the stratification is increased, it first
suppresses perturbations in the bulk, so the instability becomes more localised to the
boundary layer. At the same time, the fastest growing mode shifts to smaller scales. For
stronger stratification, the smallest scales in the boundary layer are suppressed also, and
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Figure 12. Numerical dispersion relations for S = 104 and various values of RB . Solid lines are
used for κ = η and dashed lines are used for κ = 0. In the unstratified case (RB = 0) the solid

and dashed curves are identical. In the weakly stratified case (RB = 0.1S−1/2) the solid and
dashed curves are virtually indistinguishable.

for sufficiently strong stratification the fastest growing mode shifts back to larger scales,
while the perturbations become even more localised within the boundary layer. As the
buoyancy frequency approaches the Alfvénic shear rate, the growth rate drops to that of
bulk magnetic diffusion, and the instability is effectively nullified.
Our dispersion relation (5.4) generalises the well-known unstratified result (5.5) to all

values of stratification in the range 0 6 RB ≪ 1, and the right-hand side reduces to the
result of Johnson et al. (1963) in what we have called the “moderately stratified regime”,
wherein stratification begins to affect the boundary layer. Because our dispersion relation
ceases to be valid forRB & 1 (at which point the tearing instability is effectively nullified),
it can be simplified somewhat by assuming that RB ≪ 1. The simplest form that is valid
for all values of k is

(Skℓ)1/3
√

(kℓ)2 +RB

1− (kℓ)2
=

1− λ2

πλ5/6

Γ
(

(1+λ)(RB+λ)
4λ

)

Γ

(

(3+λ)(
1
3RB+λ)

4λ

) . (8.1)

It is straightforward to check that this simplified form is consistent with all of the
results (5.5)–(5.9) presented in section 5.
In the presence of thermal diffusion, we have obtained the dispersion relation

numerically. We find that thermal diffusion generally leads to a faster growing instability
that operates on smaller length scales, and that this effect becomes increasingly
significant as the strength of the stratification increases. On the basis of these results,
we conclude that the alternating, axisymmetric toroidal field in the tachocline proposed
in some models (Forgács-Dajka & Petrovay 2001; Barnabé et al. 2017) would likely be
subject to non-axisymmetric tearing instability on a timescale far shorter than the solar
cycle. This conclusion is supported by recent numerical simulations (Matilsky et al.

2024), which suggest that the field in the tachocline is characterised by long-lived,
non-axisymmetric structures, rather than a cyclic, axisymmetric toroidal field.
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Appendix A. Frobenius series

In order to asymptotically match the bulk solution (3.5) to the boundary-layer so-
lution (4.6), we must first express them both in the form of Frobenius series, as in
equations (5.1) and (5.2).
The behaviour of the bulk solution (3.5) for small z can be deduced using the identity

2F1(a, b; c; z) =
Γ (c)Γ (c− a− b)

Γ (c− a)Γ (c− b)
2F1(a, b; a+ b+ 1− c; 1− z)

+
Γ (c)Γ (a+ b− c)

Γ (a)Γ (b)
(1 − z)c−a−b

2F1(c− a, c− b; 1 + c− a− b; 1− z),

(A 1)

which allows us to express the solution as a power series in T , and hence z. We thus
eventually arrive at a power series in the form of equation (5.1), with

A0 =
Γ (r)Γ (1 + s)ℓ

1
2+r

Γ (54 + 1
2s+

1
2r)Γ (− 1

4 + 1
2s+

1
2r)

,

B0 =
Γ (−r)Γ (1 + s)ℓ

1
2−r

Γ (54 + 1
2s− 1

2r)Γ (− 1
4 + 1

2s− 1
2r)

. (A 2)

We note that, if r is an integer, then at least one of these coefficients is undefined. This
is because the Frobenius series then involves logarithmic terms, as described in section 3.
The boundary-layer solution (4.6), which is defined in Fourier space, can readily be

expressed as a power series in X , and hence ζ. This solution has the form

ũz =

∞
∑

n=0

[

ãn|ζ|−
1

2
+r+2n + b̃n|ζ|−

1

2
−r+2n

]

sgn(ζ), (A 3)

where

ã0 =
2λΓ (−r)

(

λ− r + 1
2

)

Γ

(

(λ− r)2 − 1
4

4λ

)

(√
λℓ2

Sk

)−
1
6+

1
3 r

,

b̃0 =
2λΓ (r)

(

λ+ r + 1
2

)

Γ

(

(λ + r)2 − 1
4

4λ

)

(√
λℓ2

Sk

)−
1
6−

1
3 r

. (A 4)

We now take the inverse Fourier transform, using the identity (4.7). We thus arrive at a
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power series in the form of equation (5.2), with

a0 =
ã0

2iΓ (12 − r) sin[π2 (
1
2 − r)]

and b0 =
b̃0

2iΓ (12 + r) sin[π2 (
1
2 + r)]

. (A 5)

Substituting the above expressions for the coefficients A0, B0, a0 and b0 into equa-
tion (5.3) yields the dispersion relation given in equation (5.4).
We have assumed throughout that ûz(z) is an odd function, and hence so is ũz(ζ).

For completeness, we will now consider the opposite case, in which ûz(z) and ũz(ζ) are
both even functions. In that case, the solution proceeds just as before, except for the
absence of the factors sgn(z) and sgn(ζ) in equations (3.5), (4.6), (5.1), (5.2) and (A 3).
However, when we take the inverse Fourier transform of equation (A 3), in place of the
identity (4.7) we must now use (see Kammler 2008)

ũz(ζ) ∼ |ζ|−α as ζ → 0 ⇐⇒ ûz(z) ∼
|z|α−1

2 cos(π2α)Γ (α)
as |z| → ∞ (A 6)

which ultimately leads to the same dispersion relation (5.4), except with both sine
functions replaced by cosines. For any value of r in the interval 1

2 < r 6 1 this
change introduces a small numerical factor to the right-hand side, which is equivalent to
increasing the value of S, and results in a smaller growth rate. In the regime RB ≪ 1
this small factor on the right-hand side is approximately (πRB/2)

2, and we find that the
growth rate now predicted by the dispersion relation is much smaller than the rate of
bulk diffusion, i.e. σ ≪ β/S. Therefore we conclude that tearing instability is effectively
absent for perturbations that have an even ûz(z).
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